CeraBEV — Ceramic Coatings for Safer, Lighter EV Battery Systems

Session: Batteries — Innovations in Design, Manufacture & Disassembly Cenex Expo 2025

Overview

Ceramic Coatings for Safer, Lighter EV Battery Systems

- Technology evolution
- What two challenges did we tackle with CeraBEV (Ceramics for BEVs)
- What's the current state?
- How did we develop these
- Performance validation
- Manufacturability
- Next steps

Technology Evolution

The early days...

Automotive ICE

EV

Two challenges tacked in CeraBEV

Advanced Coating Solutions for Cooling Plates

Improved dielectric properties, enabling optimised thermal management. Coatings for separators, cooling plates, castings etc.

Innovative Coatings for Battery Enclosures

Resistance to thermal runaway scenarios, enabling the use of lightweight materials such as Aluminium and Carbon Fibre.

Project Supported by:

A 12month ARMD Project running September 2024 – September 2025

What's the current state?

Current protection for enclosures

- Challenging to assemble
- Loss of dielectric at high temperature
- Multilayered thermal protection often required
- Widely available in market

Innovative ceramics for enclosure protection

Ceramic

Substrate: (Aluminium and CFRP)

- Integrated onto substrate (multi-material)
- Stable at very high temperatures
- Thin/lightweight
- Current similar coating systems had limited dielectric strength and were expensive -> back to drawing board

How did we validate performance

- Parallels between the battery enclosure/cooling plate coating sets eased development and testing
- Aligned with industry standards, but found gaps where we developed own-protocols

Thermal (Thermal shock, runaway, simulation)

Electrical

Environmental

Thermal validation

"Burner Rig"

- Designed & built by Cranfield
- Simulates flame exposure
- Quick and low cost
- Repeatable
- Obtains coating-specific data

Thermal Runaway

- UL2596 standard test
- Performed externally
- Real runaway event with 25 cells
- Expensive, slow & "one-shot"
- Obtains coating-substrate system data

Thermal Validation - Runaway

Route to manufacture

- Robot programming for complex geometries
- Heat management model

Demonstrators

Dielectric & thermally conductive for cooling plates

Thermal runaway protection coating for lightweight enclosures

Next steps

We've now released our ElectroHold® Coatings – TDS Available

Looking for partners

Access to test data, simulations and demonstrators

We'll support engineering qualification and production

Need something else – a range of other coatings in the pipeline

Visit Stand C3-223 (and APC stand)

Thanks for your time.

