Machine learning meets set-based design: overcoming complexity and accelerating efficiency in powertrain design

Who we are

Headquartered in Cambridge, England with offices in Yokohama, Japan and Detroit, USA.

Diverse team with decades of multi-market experience in Al and commercial software development.

World-renowned, award-winning machine learning research and development.

Automotive subject matter expertise across the company

Chinese car makers like BYD are resetting the bar in automotive...

...while the rest of the industry is held back.

"Automotive complexity has gone from the *unmanageable* to the *unimaginable*."

Secondmind breaks through complexity barriers to cut time-to-market and reduce development costs without compromising quality

Secondmind Active Learning The advanced AI system that does more with less data

- **✓** Intelligent, automated experiments
 - + First & only in the market
- **✓** Best-in-class models
 - + ...that learn
- **✓** Transparent
 - Not black box AI
- ✓ Pioneering data-efficient AI
 - + 80% less data = less time & materials

Secondmind Active Learning vs traditional processes

Intelligent, automated Design of Experiments

Traditional Design of Experiments Process

Systems with multi-dimensional control parameters require lots of experiments.

With Secondmind

Active Learning dynamically explores necessary control parameter space.

Point-based vs set-based design

Avoiding rework with set-based design

Use case: EV concept design

EV concept design for D segment SUV

Objective

Select the best electric powertrain from several candidates

Approach

Use Secondmind for System Design to apply a set-based design approach to assess the candidates:

+ Which candidate keeps the best set of designs options (feasible space) available for the rest of the design process?

1 Define the feasible design space

'Feasible' - Required performance/attributes

- + Max. vehicle speed
- + Acceleration time from 0 to 100km/h
- + Range per charge
- + Electricity consumption (WLTC)
- Battery cost

'Design space' - Design Variables

- + CD value (drag coefficient)
- Total gear ratio
- + Battery volume(kWh)
- + Max motor speed(rpm)
- + Max motor power(kW)

② Secondmind Active Learning

3 Explore the feasible space with 2d slice plots

3 Explore the feasible space with 2d slice plots

(3) Explore the feasible space with 2d slice plots

Total gear ratio < 11.5

Battery capacity = **79** kWh

Max motor power > 164 kW

4 Make decisions

Choose the electric powertrain based on the studies

- Select the candidate which has more flexible design in sub-system
- + Select the candidate with overwhelmingly attractive attributes

Electric powertrain candidate A

candidate B

Secondmind is the only AI system for model-based engineering delivering value across the V-development process where complexity is exceptional

Thank you. Any questions?

Want to learn more?

Freddie MehtaSenior Solutions Manager

freddie.mehta@secondmind.ai

Download our white paper

Our Impact on System Design

REQUIREMENTS ANALYSIS

Powertrain Architecture concept design

- + Select the best electric powertrain from several candidates to fulfil architecture requirements
- 80% reduction in the number of simulations; enabled exploration of more innovative designs

REQUIREMENTS DEFINITION

SYSTEM DESIGN

Combustion Chamber design optimization

- + Explored **3.5X** more designs in **50% less time** spent on expensive CFD analysis
- + Found design combinations previously undiscovered
- Exceeded Fuel Economy (BSFC) target while adhering to emissions thresholds

SUBSYSTEM

COMPONENT DESIGN

Electric Motor design

- Utilising existing Structural FEA and EMAG CAE tools to reduce the number of simulations required by 81% (3k vs 16k runs)
- + Reduction in Rare-Earth magnet volume while meeting targets
- + Inspire new design direction

PRODUCTION

Our Impact on Calibration Optimization

SEC MONTHO FOR CALIBRATION **CALIBRATION VALIDATION**

Heavy Duty Diesel Engine Calibration

- + Simultaneous optimization of 6 to 10 variables to minimise BSFC and meet emission thresholds
- 73% fewer test points to achieve optimised maps
- Could not be improved with subsequent manual tuning

SUBSYSTEM EVALUATION

Petrol Engine Calibration Optimization

- Time & Data heavy petrol engine calibration with poor model accuracy with existing tool-set (noise & complexity)
- Intelligent data gathering led to 50% fewer data points regd.
- 1/2 reduction in engine prototype requirements and 35% lower specialist resource requirements

COMPONENT EVALUATION

SYSTEM EVALUATION

eMotor and Inverter Calibration

- > 75% less test data required to reach optimum calibration
- ~ 50% time savings achieved to reach profile optimum
- Additionally, Intelligent temperature control algorithm minimised downtimes for rotor cooling

Applications of Secondmind tools range from 1d modelling & CFD to thermal system management & calibration

Complex simulation, design or calibration processes can be enhanced using Secondmind

Powertrain Calibration

Intelligently select most apt points to run & reduce PT Calibration resource & dyno usage by ~ 45% to 70%

Multidisciplinary Design & Optimization

Work across multiple simulators and significantly cut development times while obtaining more feasible designs

Complex System Design Exploration (eg Combustion Chamber, radiator / cooler, sizing components)

Generate greater number of valid, feasible designs to achieve targets and attribute trade-offs faster

Chassis structure design space exploration

Complex interaction between Various forces, loads & other systems such as tires & Suspension.

Hybrid & Emotor -Design Optimization

Optimise your e-Motor across various aspects i.e. magnetic performance, structural & thermal stability

Total Powertrain Optimization

Optimize system sizing, selection and layout for maximum performance and reliability across concept to calibration

