Combustion development of a Hydrogen ICE using Jet Ignition and alternative injection methods

Mike Bassett
Engineering Director
MAHLE Powertrain Limited

MAHLE Powertrain

A global Engineering Services provider specialising in high performance and high efficiency powertrains

Over 60 years of heritage, innovation and experience

ICE, Electrification and Thermal Management

Whole Powertrain Solutions

Battery Systems

Advanced Engines & Hybrids

Transmissions & E-Axles

Electric Machines

Bespoke Controls & Software

Development & Validation

Vehicle Integration

Hydrogen Engine Development Roadmap

Gen 1:

- Retrofit Dual Fuel
- Diesel fallback
- Carbon Emissions
- Minimum hardware changes

Gen 2:

- Retrofit & OE Spark ignition
- Full decarbonisation
- Good efficiency
- Clean Tailpipe Emissions

Common approach for retrofit:

- Often with piggy-back ECU
- Key benefit is the Diesel fallback when H₂ unavailable
- Not zero CO₂

Gen 3:

- OE Fully optimised for Hydrogen
- Bespoke combustion architecture
- Advanced Tech. (Boosting and combustion systems)

Gasoline 'pent roof' style tumble based combustion system:

 Designed for air/fuel mixing and turbulent energy (TKe) near spark plug at ignition Diesel type (swirl or quiescent) combustion system retained:

- Diesel injector swapped with a sparkplug
- Port fuel injection commonly adopted

Hydrogen ICE Emissions Focus

Global Warming Potential (GWP):

Need to consider Global Warming Potential (GWP)

Useful GWP numbers:	GWP_{20}	GWP ₁₀₀
Carbon Dioxide (CO₂)*	1	1
Hydrogen (H₂)**	35	12
Nitrous oxide (N₂O)*	273	273

- Need to minimise hydrogen slip (unburned fuel)
- Need to minimise NOx emissions
- Lean operation is key to clean hydrogen combustion

Measured 2000 rev/min 10 bar BMEP Lambda sweep

^{*} IPCC Global Warming Potential Values 6th Assessment Report (AR6)

^{**} Sand et al, 2023 doi.org/10.1038/s43247-023-00857-8

^{***} Ammonium Nitrate decomposition to N₂0 as reference for worst case

Challenges with Hydrogen Combustion

For H₂ ICE development it is key to:

- Minimise NOx emission
- Maximise efficiency
- Minimise or eliminate irregular combustion
- Provide robust ignition of air/fuel mixture
- Enable lean air/fuel mixtures

Direct vs Port Fuel Injection

Good mixture preparation is key: Predictable / stable combustion:

- Uniform burn
- Low emissions
- High efficiency
- Minimal irregular combustion

Port fuel injection:

- Good mixing
- High boost pressures
- Intake manifold backflash risk

Direct injection:

- Challenges with mixing
- Lower boost pressures
- Lower irregular combustion risk

in lean

pockets

Direct vs Port Fuel Injection

Development tools at MAHLE Powertrain Combustion CFD:

- 1D modelling for boundary conditions
- Moving mesh 3D model
- Injection modelling
- Advanced techniques for H₂ combustion

Design optimisation:

- Injection pressures & timing
- Combustion chamber design
- Intake port geometry
- Injector nozzle optimisation

Direct vs Port Fuel Injection

CFD optimisation

Port Fuel Injection – In-cylinder Velocities

Direct Injection – In-cylinder Velocities

MAHLE Jet Ignition

MJI Overview

- Original system developed for F1, now in road engines
- Enables higher compression ratio, efficiency and performance on Gasoline, Natural Gas and Biofuels

Passive Layout

- Only 1 fuel injector (for main chamber)
 - Common air-fuel ratio in main and pre-chambers
- Multiple ignition sites in main chamber
- Fast and stable combustion event with reduced knock

Active Layout

- Dedicated pre-chamber injector
 - Decoupling of air-fuel ratio in main and pre-chambers
- Typically used for ultra-lean operation

MAHLE Jet Ignition

H2 ICE benefits

Ultra-Lean mixtures

- MJI enables ultra-lean combustion
- Lambda = 7 achieved in testing
- High efficiency
- Ultra-low (effective zero) engine-out NOx
- Aftertreatment-free potential

Measured 2000 rev/min 4.6 bar IMEP Lambda sweep

Spark ignition

Conclusions

Optimising Combustion for Hydrogen

- Combustion system optimisation Fundamental for efficient and reliable Hydrogen Internal Combustion Engines
 - Combustion CFD Essential tool for optimisation of fuel injection, fuel mixing and overall combustion optimisation
 - Direct or Port Fuel Injection select the correct fuel injection system for the application and optimise
 - MAHLE Jet Ignition Enables ultra-lean combustion with improved ignition, emissions and efficiency
- Hydrogen ICE: Clean, Efficient and Zero Carbon

